
pytest-dependency Documentation
Release 0.3.2

Rolf Krahl

Jan 17, 2018

Contents

1 Content of the documentation 3
1.1 About pytest-dependency . 3
1.2 Installation instructions . 4
1.3 Using pytest-dependency . 5
1.4 Advanced usage . 9
1.5 Configuring pytest-dependency . 13
1.6 Reference . 13

Python Module Index 15

i

ii

pytest-dependency Documentation, Release 0.3.2

This pytest plugin manages dependencies of tests. It allows to mark some tests as dependent from other tests. These
tests will then be skipped if any of the dependencies did fail or has been skipped.

Contents 1

pytest-dependency Documentation, Release 0.3.2

2 Contents

CHAPTER 1

Content of the documentation

1.1 About pytest-dependency

This module is a plugin for the popular Python testing framework pytest. It manages dependencies of tests: you may
mark some tests as dependent from other tests. These tests will then be skipped if any of the dependencies did fail or
has been skipped.

1.1.1 What is the purpose?

In the theory of good test design, tests should be self-contained and independent. Each test should cover one single
issue, either verify that one single feature is working or that one single bug is fixed. Tests should be designed to work
in any order independent of each other.

So far the theory. The practice is often more complicated then that. Sometimes, the principle of independency of
tests is simply unrealistic or impractical. Program features often depend on each other. If some feature B depends
on another feature A in such a way that B cannot work without A, then it may simply be pointless to run the test
for B unless the test for A has succeeded. Another case may be if the subject of the tests has an internal state that
unavoidably is influenced by the tests. In this situation it may happen that test A, as a side effect, sets the system in
some state that is the precondition to be able to run test B. Again, in this case it would be pointless to try running test
B unless test A has been run successful.

It should be emphasized however that the principle of independency of tests is still valid. Before using pytest-
dependency, it is still advisable to reconsider your test design and to avoid dependencies of tests whenever possible,
rather then to manage these dependencies.

1.1.2 How does it work?

The pytest-dependency module defines a marker that can be applied to tests. The marker accepts an argument that
allows to list the dependencies of the test. Both tests, the dependency and the dependent test should be decorated
with the marker. Behind the scenes, the marker arranges for the result of the test to be recorded internally. If a list of
dependencies has been given as argument, the marker verifies that a successful outcome of all the dependencies has
been registered previously and causes a skip of the test if this was not the case.

3

http://pytest.org/

pytest-dependency Documentation, Release 0.3.2

1.1.3 Why is this useful?

The benefit of skipping dependent tests is the same as for skipping tests in general: it avoids cluttering the test report
with useless and misleading failure reports from tests that have been known beforehand not to work in this particular
case.

If tests depend on each other in such a way that test B cannot work unless test A has been run successfully, a failure of
test A will likely result in failure messages from both tests. But the failure message from test B will not be helpful in
any way. It will only distract the user from the real issue that is the failure of test A. Skipping test B in this case will
help the user to concentrate on those results that really matter.

1.1.4 Copyright and License

• Copyright 2013-2015 Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

• Copyright 2016-2017 Rolf Krahl

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

1.2 Installation instructions

1.2.1 System requirements

• Python 2.6, 2.7, or 3.2 and newer. Python 2.6 requires patching the sources, see below.

• setuptools.

• pytest 2.8.0 or newer.

(Python 3.1 is not supported by pytest 2.8.0 itself.)

1.2.2 Interaction with other packages

pytest-xdist pytest-xdist features test run parallelization, e.g. distributing tests over separate processes that run in
parallel. This is based on the assumption that the tests can be run independent of each other. Obviously, if you
are using pytest-dependency, this assumption is not valid. Thus, pytest-dependency will only work if you do not
enable parallelization in pytest-xdist.

1.2.3 Download

The latest release version of pytest-dependency source can be found at PyPI, see

https://pypi.python.org/pypi/pytest_dependency

4 Chapter 1. Content of the documentation

http://www.apache.org/licenses/LICENSE-2.0
http://pypi.python.org/pypi/setuptools/
http://pytest.org/
https://pypi.python.org/pypi/pytest_dependency

pytest-dependency Documentation, Release 0.3.2

1.2.4 Installation

1. Download the sources, unpack, and change into the source directory.

2. Build (optional):

$ python setup.py build

3. Test (optional):

$ python -m pytest

4. Install:

$ python setup.py install

The last step might require admin privileges in order to write into the site-packages directory of your Python installa-
tion.

If you are using Python 2.6, apply python2_6.patch after the first step:

1a. Patch:

$ patch -p1 < python2_6.patch

It removes the use of certain language features (dict comprehensions) that were introduced in Python 2.7.

For production use, it is always recommended to use the latest release version from PyPI, see above. If you build from
the development sources that can be found at GitHub, please note that python2_6.patch is generated dynamically and
not in the source repository.

1.3 Using pytest-dependency

The plugin defines a new marker pytest.mark.dependency().

1.3.1 Basic usage

Consider the following example test module:

import pytest

@pytest.mark.dependency()
@pytest.mark.xfail(reason="deliberate fail")
def test_a():

assert False

@pytest.mark.dependency()
def test_b():

pass

@pytest.mark.dependency(depends=["test_a"])
def test_c():

pass

@pytest.mark.dependency(depends=["test_b"])
def test_d():

1.3. Using pytest-dependency 5

pytest-dependency Documentation, Release 0.3.2

pass

@pytest.mark.dependency(depends=["test_b", "test_c"])
def test_e():

pass

All the tests are decorated with pytest.mark.dependency(). This will cause the test results to be registered
internally and thus other tests may depend on them. The list of dependencies of a test may be set in the optional
depends argument to the marker. Running this test, we will get the following result:

$ py.test -rsx basic.py
============================= test session starts ==============================
platform linux -- Python 3.4.6, pytest-2.8.7, py-1.4.30, pluggy-0.3.1
rootdir: /home/user/pytest-dependency-0.2, inifile:
plugins: dependency-0.2
collected 5 items

basic.py x.s.s
=========================== short test summary info ============================
SKIP [1] /usr/lib/python3.4/site-packages/pytest_dependency.py:65: test_e depends on
→˓test_c
SKIP [1] /usr/lib/python3.4/site-packages/pytest_dependency.py:65: test_c depends on
→˓test_a
XFAIL basic.py::test_a

deliberate fail

================ 2 passed, 2 skipped, 1 xfailed in 0.02 seconds ================

The first test has deliberately been set to fail to illustrate the effect. We will get the following resuts:

test_a deliberatly fails.

test_b succeeds.

test_c will be skipped because it depends on test_a.

test_d depends on test_b which did succeed. It will be run and succeed as well.

test_e depends on test_b and test_c. test_b did succeed, but test_c has been skipped. So this one will also be skipped.

1.3.2 Naming tests

Tests are referenced by their name in the depends argument. The default for this name is the node ID defined by pytest,
that is the name of the test function, extended by the parameters if applicable. In some cases, it’s not easy to predict
the names of the node IDs. For this reason, the name of the tests can be overridden by an explicit name argument to
the marker. The names must be unique in the scope, which is currently the test module. The following example works
exactly as the last one, only the test names are explicitely set:

import pytest

@pytest.mark.dependency(name="a")
@pytest.mark.xfail(reason="deliberate fail")
def test_a():

assert False

@pytest.mark.dependency(name="b")
def test_b():

pass

6 Chapter 1. Content of the documentation

pytest-dependency Documentation, Release 0.3.2

@pytest.mark.dependency(name="c", depends=["a"])
def test_c():

pass

@pytest.mark.dependency(name="d", depends=["b"])
def test_d():

pass

@pytest.mark.dependency(name="e", depends=["b", "c"])
def test_e():

pass

1.3.3 Using test classes

Tests may be grouped in classes in pytest. Marking the dependencies of methods in test classes works the same way
as for simple test functions. In the following example we define two test classes. Each works in the same manner as
the previous examples respectively:

import pytest

class TestClass(object):

@pytest.mark.dependency()
@pytest.mark.xfail(reason="deliberate fail")
def test_a(self):

assert False

@pytest.mark.dependency()
def test_b(self):

pass

@pytest.mark.dependency(depends=["TestClass::test_a"])
def test_c(self):

pass

@pytest.mark.dependency(depends=["TestClass::test_b"])
def test_d(self):

pass

@pytest.mark.dependency(depends=["TestClass::test_b", "TestClass::test_c"])
def test_e(self):

pass

class TestClassNamed(object):

@pytest.mark.dependency(name="a")
@pytest.mark.xfail(reason="deliberate fail")
def test_a(self):

assert False

@pytest.mark.dependency(name="b", depends=["a"])
def test_b(self):

pass

1.3. Using pytest-dependency 7

pytest-dependency Documentation, Release 0.3.2

@pytest.mark.dependency(name="c")
def test_c(self):

pass

@pytest.mark.dependency(name="d", depends=["c"])
def test_d(self):

pass

@pytest.mark.dependency(name="e", depends=["b", "c"])
def test_e(self):

pass

In TestClass the default names for the tests are used, which is build from the name of the class and the respec-
tive method in this case, while in TestClassNamed these names are overridden by an explicit name argument to the
pytest.mark.dependency() marker.

Changed in version 0.3: The name of the class is prepended to method name to form the default name for the test.

1.3.4 Parametrized tests

In the same way as the pytest.mark.skip() and pytest.mark.xfail() markers, the pytest.mark.
dependency() marker may be applied to individual test instances in the case of parametrized tests. Consider the
following example:

import pytest

@pytest.mark.parametrize("x,y", [
pytest.mark.dependency(name="a1")((0,0)),
pytest.mark.dependency(name="a2")(pytest.mark.xfail((0,1))),
pytest.mark.dependency(name="a3")((1,0)),
pytest.mark.dependency(name="a4")((1,1))

])
def test_a(x,y):

assert y <= x

@pytest.mark.parametrize("u,v", [
pytest.mark.dependency(name="b1", depends=["a1", "a2"])((1,2)),
pytest.mark.dependency(name="b2", depends=["a1", "a3"])((1,3)),
pytest.mark.dependency(name="b3", depends=["a1", "a4"])((1,4)),
pytest.mark.dependency(name="b4", depends=["a2", "a3"])((2,3)),
pytest.mark.dependency(name="b5", depends=["a2", "a4"])((2,4)),
pytest.mark.dependency(name="b6", depends=["a3", "a4"])((3,4))

])
def test_b(u,v):

pass

@pytest.mark.parametrize("w", [
pytest.mark.dependency(name="c1", depends=["b1", "b2", "b6"])(1),
pytest.mark.dependency(name="c2", depends=["b2", "b3", "b6"])(2),
pytest.mark.dependency(name="c3", depends=["b2", "b4", "b6"])(3)

])
def test_c(w):

pass

The test instance test_a[0-1], named a2 in the pytest.mark.dependency() marker, is going to fail. As a result,
the dependent tests b1, b4, b5, and in turn c1 and c3 will be skipped.

8 Chapter 1. Content of the documentation

pytest-dependency Documentation, Release 0.3.2

1.3.5 Marking dependencies at runtime

Sometimes, dependencies of test instances are too complicated to be formulated explicitely beforehand using the
pytest.mark.dependency() marker. It may be easier to compile the list of dependencies of a test at run time.
In such cases, the function pytest_dependency.depends() comes handy. Consider the following example:

import pytest
from pytest_dependency import depends

@pytest.mark.dependency()
def test_a():

pass

@pytest.mark.dependency()
@pytest.mark.xfail(reason="deliberate fail")
def test_b():

assert False

@pytest.mark.dependency()
def test_c(request):

depends(request, ["test_b"])
pass

@pytest.mark.dependency()
def test_d(request):

depends(request, ["test_a", "test_c"])
pass

Tests test_c and test_d set their dependencies at runtime calling pytest_dependency.depends(). The first
argument is the value of the request pytest fixture, the second argument is the list of dependencies. It has the same
effect as passing this list as the depends argument to the pytest.mark.dependency() marker.

The present example is certainly somewhat artificial, as the use of the pytest_dependency.depends() func-
tion would not be needed in such a simple case. For a more involved example that can not as easily be formulated with
the static the depends argument, see Grouping tests using fixtures.

1.4 Advanced usage

This section contains some advanced examples for using pytest-dependency.

1.4.1 Dynamic compilation of marked parameters

Sometimes, the parameter values for parametrized tests cannot easily be typed as a simple list. It may need to be
compiled at run time depending on a set of test data. This also works together with marking dependencies in the
individual test instances.

Consider the following example test module:

import pytest

Test data
Consider a bunch of Nodes, some of them are parents and some are children.

class Node(object):
NodeMap = {}

1.4. Advanced usage 9

pytest-dependency Documentation, Release 0.3.2

def __init__(self, name, parent=None):
self.name = name
self.children = []
self.NodeMap[self.name] = self
if parent:

self.parent = self.NodeMap[parent]
self.parent.children.append(self)

else:
self.parent = None

def __str__(self):
return self.name

parents = [Node("a"), Node("b"), Node("c"), Node("d"),]
childs = [Node("e", "a"), Node("f", "a"), Node("g", "a"),

Node("h", "b"), Node("i", "c"), Node("j", "c"),
Node("k", "d"), Node("l", "d"), Node("m", "d"),]

The test for the parent shall depend on the test of all its children.
Create enriched parameter lists, decorated with the dependency marker.

childparam = [
pytest.mark.dependency(name="test_child[%s]" % c)(c) for c in childs

]
parentparam = [

pytest.mark.dependency(
name="test_parent[%s]" % p,
depends=["test_child[%s]" % c for c in p.children]

)(p) for p in parents
]

@pytest.mark.parametrize("c", childparam)
def test_child(c):

if c.name == "l":
pytest.xfail("deliberate fail")
assert False

@pytest.mark.parametrize("p", parentparam)
def test_parent(p):

pass

In principle, this example works the very same way as the basic example for Parametrized tests. The only difference
is that the lists of paramters are dynamically compiled beforehand. The test for child l deliberately fails, just to show
the effect. As a consequence, the test for its parent d will be skipped.

1.4.2 Grouping tests using fixtures

pytest features the automatic grouping of tests by fixture instances. This is particularly useful if there is a set of test
cases and a series of tests shall be run for each of the test case respectively.

Consider the following example:

import pytest
from pytest_dependency import depends

@pytest.fixture(scope="module", params=range(1,10))
def testcase(request):

10 Chapter 1. Content of the documentation

https://docs.pytest.org/en/stable/fixture.html#automatic-grouping-of-tests-by-fixture-instances

pytest-dependency Documentation, Release 0.3.2

param = request.param
return param

@pytest.mark.dependency()
def test_a(testcase):

if testcase % 7 == 0:
pytest.xfail("deliberate fail")
assert False

@pytest.mark.dependency()
def test_b(request, testcase):

depends(request, ["test_a[%d]" % testcase])
pass

The test instances of test_b depend on test_a for the same parameter value. The test test_a[7] deliberately fails, as a
consequence test_b[7] will be skipped. Note that we need to call pytest_dependency.depends() to mark the
dependencies, because there is no way to use the pytest.mark.dependency() marker on the parameter values
here.

If many tests in the series depend on a single test, it might be an option, to move the call to pytest_dependency.
depends() in a fixture on its own. Consider:

import pytest
from pytest_dependency import depends

@pytest.fixture(scope="module", params=range(1,10))
def testcase(request):

param = request.param
return param

@pytest.fixture(scope="module")
def dep_testcase(request, testcase):

depends(request, ["test_a[%d]" % testcase])
return testcase

@pytest.mark.dependency()
def test_a(testcase):

if testcase % 7 == 0:
pytest.xfail("deliberate fail")
assert False

@pytest.mark.dependency()
def test_b(dep_testcase):

pass

@pytest.mark.dependency()
def test_c(dep_testcase):

pass

In this example, both test_b[7] and test_c[7] are skipped, because test_a[7] deliberately fails.

1.4.3 Depend on all instances of a parametrized test at once

If a test depends on a all instances of a parametrized test at once, listing all of them in the pytest.mark.
dependency() marker explicitly might not be the best solution. But you can dynamically compile these lists
from the parameter values, as in the following example:

1.4. Advanced usage 11

pytest-dependency Documentation, Release 0.3.2

import pytest

def instances(name, params):
def vstr(val):

if isinstance(val, (list, tuple)):
return "-".join([str(v) for v in val])

else:
return str(val)

return ["%s[%s]" % (name, vstr(v)) for v in params]

params_a = range(17)

@pytest.mark.parametrize("x", params_a)
@pytest.mark.dependency()
def test_a(x):

if x == 13:
pytest.xfail("deliberate fail")
assert False

else:
pass

@pytest.mark.dependency(depends=instances("test_a", params_a))
def test_b():

pass

params_c = zip(range(0,8,2), range(2,6))

@pytest.mark.parametrize("x,y", params_c)
@pytest.mark.dependency()
def test_c(x, y):

if x > y:
pytest.xfail("deliberate fail")
assert False

else:
pass

@pytest.mark.dependency(depends=instances("test_c", params_c))
def test_d():

pass

params_e = ['abc', 'def']

@pytest.mark.parametrize("s", params_e)
@pytest.mark.dependency()
def test_e(s):

if 'e' in s:
pytest.xfail("deliberate fail")
assert False

else:
pass

@pytest.mark.dependency(depends=instances("test_e", params_e))
def test_f():

pass

Here, test_b, test_d, and test_f will be skipped because they depend on all instances of test_a, test_c, and test_e
respectively, but test_a[13], test_c[6-5], and test_e[def] fail. The list of the test instances is compiled in the helper

12 Chapter 1. Content of the documentation

pytest-dependency Documentation, Release 0.3.2

function instances().

Unfortunately you need knowledge how pytest encodes parameter values in test instance names to write this helper
function. Note in particular how lists of parameter values are compiled into one single string in the case of multi
parameter tests. But also note that this example of the instances() helper will only work for simple cases. It requires
the parameter values to be scalars that can easily be converted to strings. And it will fail if the same list of parameters
is passed to the same test more then once, because then, pytest will add an index to the name to disambiguate the
parameter values.

1.5 Configuring pytest-dependency

This section explains configuration options for pytest-dependency, but also options for pytest itself or other plugins
that are recommended for the use with pytest-dependency.

1.5.1 Notes on configuration for other plugins

pytest-xdist Test run parallelization in pytest-xdist is incompatible with pytest-dependency, see Interaction with other
packages. By default, parallelization is disabled in pytest-xdist (–dist=no). You are advised to leave this default.

1.5.2 Configuration file options

Configuration file options can be set in the ini file.

minversion This is a builtin configuration option of pytest itself. Since pytest-dependency requires pytest 2.8.0 or
newer, it is recommended to set this option accordingly, either to 2.8.0 or to a newer version, if required by your
test code.

automark_dependency This is a flag. If set to False, the default, the outcome of a test will only be registered
if the test has been decorated with the pytest.mark.dependency() marker. As a results, all tests, the
dependencies and the dependent tests must be decorated. If set to True, the outcome of all tests will be registered.
It has the same effect as if all tests are implicitly decorated with pytest.mark.dependency().

New in version 0.3.

1.5.3 Command line options

The following command line options are added by pytest.dependency:

–ignore-unknown-dependency By default, a test will be skipped unless all the dependencies have been run success-
ful. If this option is set, a test will be skipped if any of the dependencies has been skipped or failed. E.g.
dependencies that have not been run at all will be ignored.

This may be useful if you run only a subset of the testsuite and some tests in the selected set are marked to
depend on other tests that have not been selected.

New in version 0.3.

1.6 Reference

@pytest.mark.dependency(name=None, depends=[])
Mark a test to be used as a dependency for other tests or to depend on other tests.

1.5. Configuring pytest-dependency 13

pytest-dependency Documentation, Release 0.3.2

This will cause the test results to be registered internally and thus other tests may depend on the test. The list of
dependencies for the test may be set in the depends argument.

Parameters

• name (str) – the name of the test to be used for referencing by dependent tests. If not set,
it defaults to the node ID defined by pytest, that is the name of the test function, extended
by the parameters if applicable. The name must be unique in the scope, which is currently
the test module.

• depends (iterable of str) – dependencies, a list of names of tests that this test depends
on. The test will be skipped unless all of the dependencies have been run successfully. The
dependencies must also have been decorated by the marker.

pytest_dependency.depends(request, other)
Add dependency on other test.

Call pytest.skip() unless a successful outcome of all of the tests in other has been registered previously. This has
the same effect as the depends keyword argument to the pytest.mark.dependency() marker. In contrast
to the marker, this function may be called at runtime during a test.

Parameters

• request – the value of the request pytest fixture related to the current test.

• other (iterable of str) – dependencies, a list of names of tests that this test depends on.

New in version 0.2.

14 Chapter 1. Content of the documentation

Python Module Index

p
pytest_dependency, 14

15

pytest-dependency Documentation, Release 0.3.2

16 Python Module Index

Index

D
depends() (in module pytest_dependency), 14

P
pytest.mark.dependency() (built-in function), 13
pytest_dependency (module), 14

17

	Content of the documentation
	About pytest-dependency
	Installation instructions
	Using pytest-dependency
	Advanced usage
	Configuring pytest-dependency
	Reference

	Python Module Index

