

pytest-dependency - Manage dependencies of tests

This pytest plugin manages dependencies of tests. It allows to mark
some tests as dependent from other tests. These tests will then be
skipped if any of the dependencies did fail or has been skipped.

Content of the documentation

	About pytest-dependency
	What is the purpose?

	How does it work?

	Why is this useful?

	Copyright and License

	Installation instructions
	System requirements

	Download

	Installation

	Using pytest-dependency
	Basic usage

	Naming tests

	Parametrized tests

	Marking dependencies at runtime

	Reference

About pytest-dependency

This module is a plugin for the popular Python testing framework
pytest [http://pytest.org/]. It manages dependencies of tests: you may mark some tests
as dependent from other tests. These tests will then be skipped if
any of the dependencies did fail or has been skipped.

What is the purpose?

In the theory of good test design, tests should be self-contained and
independent. Each test should cover one single issue, either verify
that one single feature is working or that one single bug is fixed.
Tests should be designed to work in any order independent of each
other.

So far the theory. The practice is often more complicated then that.
Sometimes, the principle of independency of tests is simply
unrealistic or impractical. Program features often depend on each
other. If some feature B depends on another feature A in such a way
that B cannot work without A, then it may simply be pointless to run
the test for B unless the test for A has succeeded. Another case may
be if the subject of the tests has an internal state that unavoidably
is influenced by the tests. In this situation it may happen that test
A, as a side effect, sets the system in some state that is the
precondition to be able to run test B. Again, in this case it would
be pointless to try running test B unless test A has been run
successful.

It should be emphasized however that the principle of independency of
tests is still valid. Before using pytest-dependency, it is still
advisable to reconsider your test design and to avoid dependencies of
tests whenever possible, rather then to manage these dependencies.

How does it work?

The pytest-dependency module defines a marker that can be applied to
tests. The marker accepts an argument that allows to list the
dependencies of the test. Both tests, the dependency and the
dependent test should be decorated with the marker. Behind the
scenes, the marker arranges for the result of the test to be recorded
internally. If a list of dependencies has been given as argument, the
marker verifies that a successful outcome of all the dependencies has
been registered previously and causes a skip of the test if this was
not the case.

Why is this useful?

The benefit of skipping dependent tests is the same as for skipping
tests in general: it avoids cluttering the test report with useless
and misleading failure reports from tests that have been known
beforehand not to work in this particular case.

If tests depend on each other in such a way that test B cannot work
unless test A has been run successfully, a failure of test A will
likely result in failure messages from both tests. But the failure
message from test B will not be helpful in any way. It will only
distract the user from the real issue that is the failure of test A.
Skipping test B in this case will help the user to concentrate on
those results that really matter.

Copyright and License

	Copyright 2013-2015
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

	Copyright 2016-2017 Rolf Krahl

Licensed under the Apache License, Version 2.0 (the “License”); you
may not use this file except in compliance with the License. You may
obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied. See the License for the specific language governing
permissions and limitations under the License.

Installation instructions

System requirements

	Python 2.6, 2.7, or 3.1 and newer.
Python 2.6 requires patching the sources, see below.

	setuptools [http://pypi.python.org/pypi/setuptools/].

	pytest [http://pytest.org/] 2.8.0 or newer.

Download

The latest release version of pytest-dependency source can be found at
PyPI, see

https://pypi.python.org/pypi/pytest_dependency

Installation

	Download the sources, unpack, and change into the source directory.

	Build (optional):

$ python setup.py build

	Test (optional):

$ python -m pytest

	Install:

$ python setup.py install

The last step might require admin privileges in order to write into
the site-packages directory of your Python installation.

If you are using Python 2.6, apply python2_6.patch after the first
step:

1a. Patch:

$ patch -p1 < python2_6.patch

It removes the use of certain language features (dict comprehensions)
that were introduced in Python 2.7.

For production use, it is always recommended to use the latest release
version from PyPI, see above. If you build from the development
sources that can be found at GitHub, please note that python2_6.patch
is generated dynamically and not in the source repository.

Using pytest-dependency

The plugin defines a new marker pytest.mark.dependency().

Basic usage

Consider the following example test module:

import pytest

@pytest.mark.dependency()
@pytest.mark.xfail(reason="deliberate fail")
def test_a():
 assert False

@pytest.mark.dependency()
def test_b():
 pass

@pytest.mark.dependency(depends=["test_a"])
def test_c():
 pass

@pytest.mark.dependency(depends=["test_b"])
def test_d():
 pass

@pytest.mark.dependency(depends=["test_b", "test_c"])
def test_e():
 pass

All the tests are decorated with pytest.mark.dependency(). This
will cause the test results to be registered internally and thus other
tests may depend on them. The list of dependencies of a test may be
set in the optional depends argument to the marker. The first test
has deliberately been set to fail to illustrate the effect. We will
get the following resuts:

	test_a

	deliberatly fails.

	test_b

	succeeds.

	test_c

	will be skipped because it depends on test_a.

	test_d

	depends on test_b which did succeed. It will be run and succeed
as well.

	test_e

	depends on test_b and test_c. test_b did succeed, but
test_c has been skipped. So this one will also be skipped.

Naming tests

Tests are referenced by their name in the depends argument. The
default for this name is the node ID defined by pytest, that is the
name of the test function, extended by the parameters if applicable.
As these node IDs may become complicated, the name can be overridden
by an explicit name argument to the marker. The following example
works exactly as the last one, only the test names are explicitely
set:

import pytest

@pytest.mark.dependency(name="a")
@pytest.mark.xfail(reason="deliberate fail")
def test_a():
 assert False

@pytest.mark.dependency(name="b")
def test_b():
 pass

@pytest.mark.dependency(name="c", depends=["a"])
def test_c():
 pass

@pytest.mark.dependency(name="d", depends=["b"])
def test_d():
 pass

@pytest.mark.dependency(name="e", depends=["b", "c"])
def test_e():
 pass

Parametrized tests

In the same way as the pytest.mark.skip() and
pytest.mark.xfail() markers, the pytest.mark.dependency()
marker may be applied to individual test instances in the case of
parametrized tests. Consider the following example:

import pytest

@pytest.mark.parametrize("x,y", [
 pytest.mark.dependency(name="a1")((0,0)),
 pytest.mark.dependency(name="a2")(pytest.mark.xfail((0,1))),
 pytest.mark.dependency(name="a3")((1,0)),
 pytest.mark.dependency(name="a4")((1,1))
])
def test_a(x,y):
 assert y <= x

@pytest.mark.parametrize("u,v", [
 pytest.mark.dependency(name="b1", depends=["a1", "a2"])((1,2)),
 pytest.mark.dependency(name="b2", depends=["a1", "a3"])((1,3)),
 pytest.mark.dependency(name="b3", depends=["a1", "a4"])((1,4)),
 pytest.mark.dependency(name="b4", depends=["a2", "a3"])((2,3)),
 pytest.mark.dependency(name="b5", depends=["a2", "a4"])((2,4)),
 pytest.mark.dependency(name="b6", depends=["a3", "a4"])((3,4))
])
def test_b(u,v):
 pass

@pytest.mark.parametrize("w", [
 pytest.mark.dependency(name="c1", depends=["b1", "b2", "b6"])(1),
 pytest.mark.dependency(name="c2", depends=["b2", "b3", "b6"])(2),
 pytest.mark.dependency(name="c3", depends=["b2", "b4", "b6"])(3)
])
def test_c(w):
 pass

The test instance test_a[0-1], named a2 in the
pytest.mark.dependency() marker, is going to fail. As a result,
the dependent tests b1, b4, b5, and in turn c1 and c3 will
be skipped.

Marking dependencies at runtime

Sometimes, dependencies of test instances are too complicated to be
formulated explicitely beforehand using the
pytest.mark.dependency() marker. It may be easier to compile
the list of dependencies of a test at run time. In such cases, the
function pytest_dependency.depends() comes handy. Consider the
following example:

import pytest
from pytest_dependency import depends

@pytest.mark.dependency()
def test_a():
 pass

@pytest.mark.dependency()
@pytest.mark.xfail(reason="deliberate fail")
def test_b():
 assert False

@pytest.mark.dependency()
def test_c(request):
 depends(request, ["test_b"])
 pass

@pytest.mark.dependency()
def test_d(request):
 depends(request, ["test_a", "test_c"])
 pass

Tests test_c and test_d set their dependencies at runtime calling
pytest_dependency.depends(). The first argument is the values
of the request pytest fixture, the second argument is the list of
dependencies. It has the same effect as passing this list as the
depends argument to the pytest.mark.dependency() marker.

Reference

	
@pytest.mark.dependency(name=None, depends=[])

	Mark a test to be used as a dependency for other tests or to
depend on other tests.

This will cause the test results to be registered internally and
thus other tests may depend on the test. The list of dependencies
for the test may be set in the depends argument.

	Parameters

	
	name (str) – the name of the test to be used for referencing by
dependent tests. If not set, it defaults to the node ID
defined by pytest, that is the name of the test function,
extended by the parameters if applicable.

	depends (iterable of str) – dependencies, a list of names of tests that this
test depends on. The test will be skipped unless all of the
dependencies have been run successfully. The dependencies
must also have been decorated by the marker.

 Python Module Index

 p

 		 	

 		
 p	

 	
 	
 pytest_dependency	

Index

 P

P

 	
 	pytest.mark.dependency() (built-in function)

 	
 	pytest_dependency (module)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 pytest-dependency - Manage dependencies of tests

 		
 About pytest-dependency

 		
 What is the purpose?

 		
 How does it work?

 		
 Why is this useful?

 		
 Copyright and License

 		
 Installation instructions

 		
 System requirements

 		
 Download

 		
 Installation

 		
 Using pytest-dependency

 		
 Basic usage

 		
 Naming tests

 		
 Parametrized tests

 		
 Marking dependencies at runtime

 		
 Reference

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

